

Performance Evaluation and Reporting

A.K.A. Data Monitoring

John Stevens
Sandia National Laboratories
jwsteve@sandia.gov

Decisions to Make Before You Start

- Is there something specific you'd like to know?
 - Fuel conversion efficiency, power output, battery state of charge, etc.
- Do you want to examine the functioning of the entire system?
 - Do you want to dedicate the man-power to do this?

System Monitoring Methods

- Continuous data acquisition
 - System performance/efficiency over a range of operating conditions, downtime, impending problems
- Field surveys
 - System performance/efficiency at specific operating points, component degradation
- Logbooks
 - Maintenance requirements, component reliability

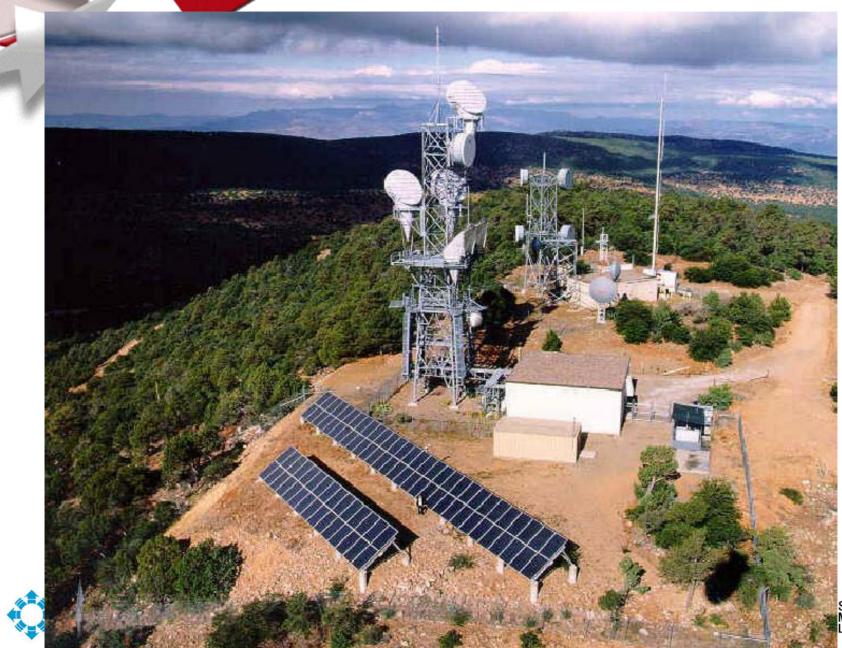
Typical Monitoring Costs

Install a DAS

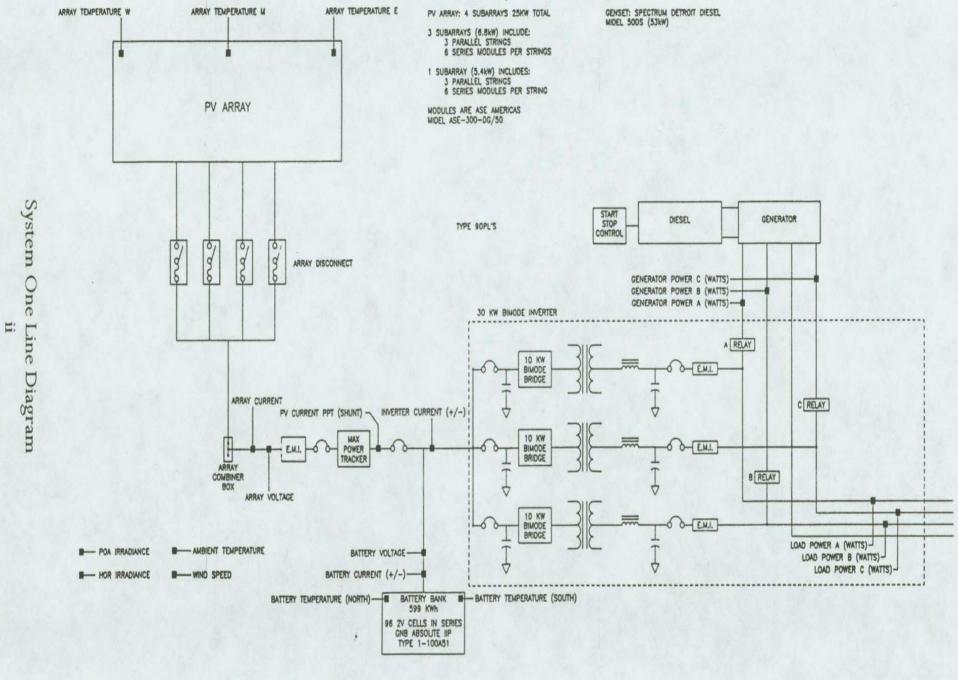
• Field survey

Logbooks

\$25-50k


\$2-5K

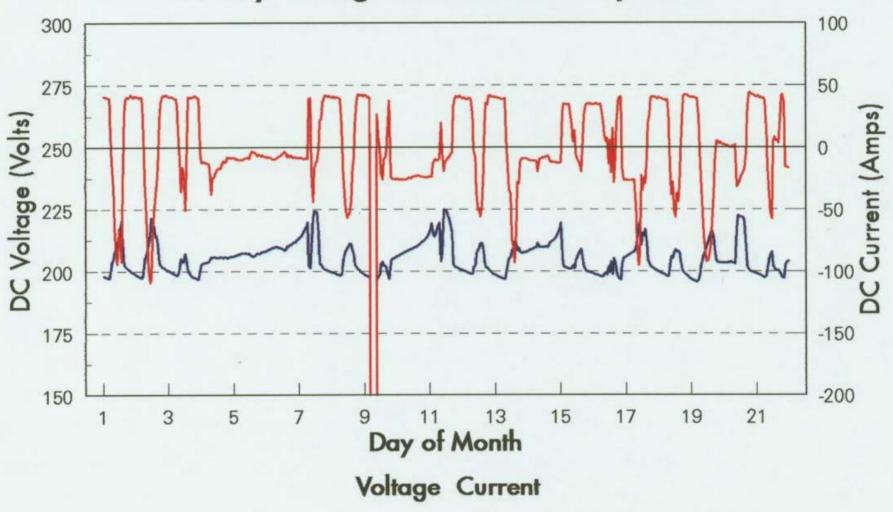
\$500/year



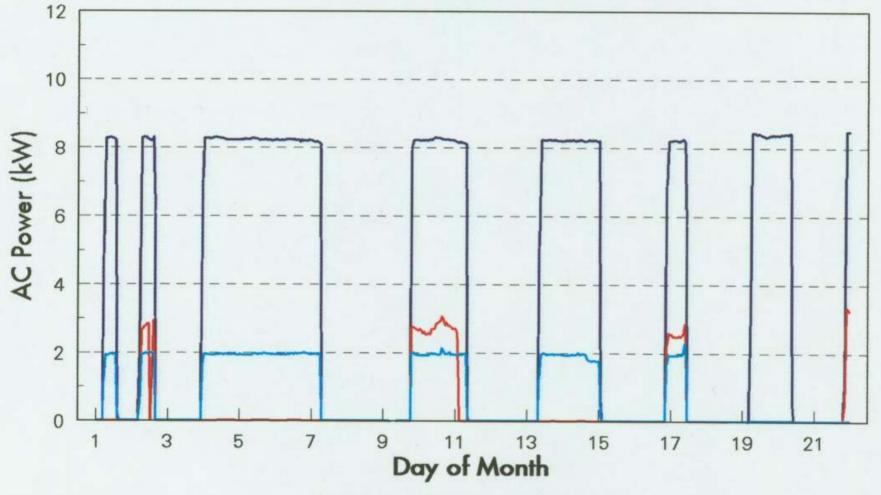
Sandia National Laboratories

NOTE: PV CURRENT PPT, INVERTER CURRENT (+/-), AND BATTERY CURRENT (+/-) ARE MEASURED IN THE NEGATIVE LEG.

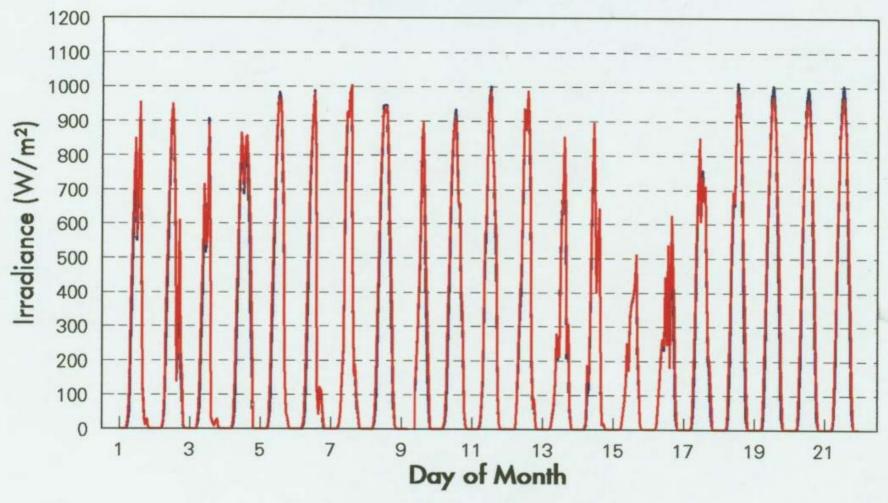
Carol Spring Mountain Monthly Summary July 1996



System Energy Balance	Total	%	Runtime	Fuel Usage	
PV Array (DC)	1789.1 kWh	43.0			
Total Generator (AC)	+2371.6 kWh	57.0	220.4 Hours	259.7 Gallons	
Total Facility Load (AC)	-3134.5 kWh				
Charge Balance + Losses	1026.2 kWh				
Battery					
Total Charging Energy (DC)	-1514.1 kWh				
Total Discharging Energy (DC)	+1426.8 kWh				
Net Battery Energy (DC)	-87.3 kWh				
Round Trip Efficiency (± SOC)	94 %				
Average Battery Voltage (DC)	205.3 V				
Average Battery Temperature (South)	27.2 °C				
Average Battery Temperature (North)	27.5 °C				
Peak Power Tracker/Charger					
Average PV Array Voltage (DC)	286.6 V				
Total PV Array Current (DC)	6.5 kAh				
Average Battery Voltage (DC)	205.3 V				
Total Peak Power Tracker Current (DC)	8.4 kAh				
Charging Efficiency	86 %				
Weather	Average				
Ambient	22.1 °C				
Module Middle (Daytime POA > 50)	38.7 °C				
Module West (Daytime POA > 50)	38.7 °C				
Module East (Daytime POA > 50)	39.1 °C				
	Total	Daily			
Plane of Array (32.5° Tilt)	122.6 kWh/m	2 5.9 kWh/m ²			
Horizontal	130.4 kWh/m	e 6.3 kWh/m²			
MODE DESAMBOUNT					
MODE BREAKDOWN:	Number of Hours			Generated	Average Efficiency
Mode 1 (S:Battery, L:Facility)	144.5 Hrs	(29.0%)	1142.1 kWh	(21.3%)	76.2 %
Mode 2 (S: PV+Battery, L:Facility)	61.2 Hrs	(12.3%)	505.5 kWh	(9.4%)	76.1 %
Mode 3 (S: PV, L: Facility+Battery)	69.6 Hrs	(14.0%)	1025.4 kWh	(19.1%)	86.3 %
Mode 4 (S:PV+Gen, L:Facility+Battery)	54.9 Hrs	(11.0%)	1081.1 kWh	(20.2%)	87.4 %
Mode 5 (S:Gen, L:Facility+Battery)	147.1 Hrs	(29.6%)	1608.1 kWh	(30.0%)	82.2 %
Fault	20.5 Hrs	(4.1%)			

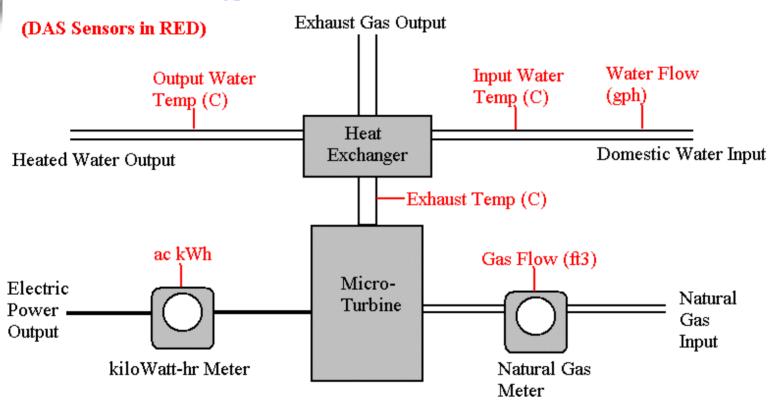

Carol Spring Mountain Battery Voltage and Current: July 1996

Negative current indicates battery is charging. Positive current indicates battery is discharging.


Carol Spring Mountain Generator Power: July 1996

Phase A Phase B Phase C

Carol Spring Mountain Irradiance: July 1996


Plane of Array Horizontal

Typical Microturbine DAS Channels

Other DAS Channels:

Barometric Pressure Ambient Temperature Relative Humidity

Performance Evaluation and Reporting Summary

- Data acquisition systems are expensive to install
- Analyzing the data can be even more expensive
- Make sure the information you want can't be obtained from field surveys or logbooks before installing a DAS
- If a DAS is called for, be sure it will provide what you need to know

